[34] Y. He, J. Zhu, Y. Yuan, Y. Yang, Y. Liu, M. Chen, D. Cao*, X. Yan*, Dual-regulation charges separation tactics with synergistic effect of 1D/0D heterostructure and inserted ferroelectric layer for boosting photoelectrochemical water oxidation, J. Mater. Chem. A, 12 (2021) 7594-7605. (IF=11.296)
[33] Y. He, P. Wang, J. Zhu, Y. Yang, Y. Liu, M. Chen, D. Cao*, X. Yan*, Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO2, ACS Appl. Mater. Interfaces. 11 (2019) 37322–37329.[32] Y. Wang, J. Liu, Y. Huang, Z. Wang, Q. Li, S. Yue, K. Liu, S. Yan, M. Liu, D. Cao*, Y. Li,* Z. Wang,* X. Yang, S. Qu, Insights on the Origination of Ambipolar Photocurrent of Ferroelectric and the Improvement of Photoanodic Current, J. Electrochem. Soc. 166 (2019) H418–H424.[31] Y. Liu, T.-T. Shi, T. Chen, W.-J. He, M.-M. Chen*, D. Cao*, The naked-eye NH3 sensor based on fluorinated graphene, Sensors Actuators B Chem. 281 (2019) 789–794. [30] Y. Liu, P. Shen, L. Feng, Y. Wu, M. Chen*, Y. Sun, Q. Feng, D. Cao*, Mutual modulation of F-distribution and N-configuration in F and N dual-functionalized graphene, Appl. Surf. Sci. 465 (2019) 880–887.[29] P. Wang, Y. He, Y. Mi, J. Zhu, F. Zhang, Y. Liu*, Y. Yang, M. Chen, D. Cao*, Enhanced photoelectrochemical performance of LaFeO 3 photocathode with Au buffer layer, RSC Adv. 9 (2019) 26780–26786.[28] X. Shen, M. Chen, L. Shi, F. Chen, Y. Liu, D. Cao, C. Xu, Lasing behaviors in solution processed all-inorganic CsPbBr3 perovskite microsized crystals, Opt. Commun. 453 (2019) 124354.[27] Y. Liu, J.-N. Chen, X. Li, Y.-T. Shi, M.-M. Chen*, D. Cao*, Fluorination of graphene oxide at ambient conditions, Diam. Relat. Mater. 91 (2019) 107–111.[26] N. Nasori, T. Dai, X. Jia, A. Rubiyanto, D. Cao, S. Qu, Z. Wang, Z. Wang, Y. Lei, Realizing super-long Cu 2 O nanowires arrays for high-efficient water splitting applications with a convenient approach, J. Semicond. 40 (2019) 052701.[25] Y. Huang, J. Liu, D. Cao, Z. Liu, K. Ren, K. Liu, A. Tang, Z. Wang, L. Li, S. Qu, Z. Wang, Separation of hot electrons and holes in Au/LaFeO3 to boost the photocatalytic activities both for water reduction and oxidation, Int. J. Hydrogen Energy. 44 (2019) 13242–13252.[24] Y. Liu*, Y. Shi, Q. Feng, M. Chen, D. Cao*, Distribution-dependent capacitive and magnetic properties of Mn3O4nanoparticles on reduced graphene oxide, Diam. Relat. Mater. 84 (2018) 169–177.[23] S. Yue, S. Lu, K. Ren, K. Liu, M. Azam, D. Cao, Z. Wang, Y. Lei, S. Qu, Z. Wang, Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells, Small. 13 (2017) 1700007. [22] S. Yue, K. Liu, R. Xu, M. Li, M. Azam, K. Ren, J. Liu, Y. Sun, Z. Wang*, D. Cao, X. Yan, S. Qu*, Y. Lei*, Z. Wang, Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells, Energy Environ. Sci. 10 (2017) 2570–2578. [21] L. Fang*, F. Nan, Y. Yang, D. Cao*, Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals, Appl. Phys. Lett. 108 (2016) 093902. [20] Z. Wang#, D. Cao#, R. Xu#, S. Qu, Z. Wang, Y. Lei*, Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently, Nano Energy. 19 (2016) 328–362. [19] Y. Mi, L. Wen, Z. Wang, D. Cao, R. Xu, Y. Fang, Y. Zhou, Y. Lei*, Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst, Nano Energy. 30 (2016) 109–117. [18] D. Cao, N. Nasori, Z. Wang, Y*. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, Y. Lei*, p-Type CuBi 2 O 4 : an easily accessible photocathodic material for high-efficiency water splitting, J. Mater. Chem. A. 4 (2016) 8995–9001.[17] S. Tarish, A. Al-Haddad, R. Xu, D. Cao, Z. Wang*, S. Qu, G. Nabi, Y. Lei*, The shift of the optical absorption band edge of ZnO/ZnS core/shell nanotube arrays beyond quantum effects, J. Mater. Chem. C. 4 (2016) 1369–1374. [16] Y. Mi, L. Wen, Z. Wang, D. Cao, H. Zhao, Y. Zhou, F. Grote, Y. Lei*, Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution, Catal. Today. 262 (2016) 141–145. [15] Y. Mi, L. Wen, R. Xu, Z. Wang, D. Cao, Y. Fang, Y. Lei, Constructing a AZO/TiO 2 Core/Shell Nanocone Array with Uniformly Dispersed Au NPs for Enhancing Photoelectrochemical Water Splitting, Adv. Energy Mater. 6 (2016) 1501496. [14] F. Tan, Z. Wang, S. Qu, D. Cao, K. Liu, Q. Jiang, Y. Yang, S. Pang, W. Zhang, Y. Lei*, Z. Wang, A CdSe thin film: a versatile buffer layer for improving the performance of TiO 2 nanorod array:PbS quantum dot solar cells, Nanoscale. 8 (2016) 10198–10204. [13] Z. Wang#, D. Cao#, L. Wen, R. Xu, M. Obergfell, Y. Mi, Z. Zhan, N. Nasori, J. Demsar, Y. Lei, Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications, Nat. Commun. 7 (2016) 10348. [12] D. Cao, N. Nasori, Z. Wang, L. Wen, R. Xu, Y. Mi, Y. Lei*, Facile Surface Treatment on Cu2O Photocathodes for Enhancing the Photoelectrochemical Response, Appl. Catal. B Environ. 198 (2016) 398–403. [11] Y. Mi, L. Wen, Z. Wang, D. Cao, Y. Fang, Y. Lei*, Building of anti-restack 3D BiOCl hierarchitecture by ultrathin nanosheets towards enhanced photocatalytic activity, Appl. Catal. B Environ. 176–177 (2015) 331–337. [10] D. Chi, S. Lu, R. Xu, K. Liu, D. Cao, L. Wen, Y. Mi, Z. Wang*, Y. Lei*, S. Qu*, Z. Wang, Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells, Nanoscale. 7 (2015) 15251–15257. [9] D. Cao#, Z. Wang#, Nasori, L. Wen, Y. Mi, Y. Lei*, Switchable Charge-Transfer in the Photoelectrochemical Energy-Conversion Process of Ferroelectric BiFeO3 Photoelectrodes, Angew. Chemie Int. Ed. 53 (2014) 11027–11031. [8] C. Wang, D. Cao, F. Zheng, W. Dong, L. Fang, X. Su, M. Shen*, Photocathodic behavior of ferroelectric Pb(Zr,Ti)O3 films decorated with silver nanoparticles., Chem. Commun. 49 (2013) 3769–3771.[7] D. Cao, C. Wang, F. Zheng*, L. Fang, W. Dong, M. Shen*, Understanding the nature of remnant polarization enhancement, coercive voltage offset and time-dependent photocurrent in ferroelectric films irradiated by ultraviolet light, J. Mater. Chem. 22 (2012) 12592. [6] P. Zhang, D. Cao, C. Wang, M. Shen, X. Su, L. Fang, W. Dong, F. Zheng*, Enhanced photocurrent in Pb(Zr0.2Ti0.8)O3 ferroelectric film by artificially introducing asymmetrical interface Schottky barriers, Mater. Chem. Phys. 135 (2012) 304–308. [5] D. Cao, C. Wang, F. Zheng*, W. Dong, L. Fang, M. Shen*, High-Efficiency Ferroelectric-Film Solar Cells with an n-type Cu2O Cathode Buffer Layer, Nano Lett. 12 (2012) 2803–2809. [4] D. Cao, H. Zhang, L. Fang, W. Dong, F. Zheng*, M. Shen, Polarization effect on the photocurrent of Pt sandwiched multi-crystalline ferroelectric films, Mater. Chem. Phys. 129 (2011) 783–786..[3] D. Cao, J. Xu, L. Fang, W. Dong, F. Zheng*, M. Shen*, Interface effect on the photocurrent: A comparative study on Pt sandwiched (Bi3.7Nd0.3)Ti3O12 and Pb(Zr0.2Ti0.8)O3 films, Appl. Phys. Lett. 96 (2010) 192101. [2] D. Cao, H. Zhang, L. Fang, W. Dong, F. Zheng*, M. Shen*, Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystalline ferroelectric Pb(Zr,Ti)O3 films, Appl. Phys. Lett. 97 (2010) 102104. [1] J. Xu, D. Cao, L. Fang, F. Zheng*, M. Shen*, X. Wu, Space charge effect on the photocurrent of Pt-sandwiched Pb(Zr0.20Ti0.80)O3 film capacitors, J. Appl. Phys. 106 (2009) 113705.