江苏大学主页
|
English
首页
学院概况
党建工作
师资队伍
学科科研
学生培养
学生工作
制度建设
校友风采
师资队伍
博导风采
硕导风采
教授风采
教师风采
各类人才
招聘计划
博导风采
当前位置: 首页 > 博导风采 > 正文
陈元平
发布日期:2019-04-18 浏览次数:
姓 名
:
陈元平
职务职称
:
教授、博士生导师
研究方向
:
计算物理、凝聚态物理、人工智能、能源材料
研究生招生专业
:
物理学、材料物理
联系电话
:
0511-88780161
E-mail
:
chenyp@ujs.edu.cn
通信地址
:
江苏省镇江市学府路301号江苏大学物理与电子工程学院(212013)
● 1991/09-1995/07,湖南师范大学物理系,大学/本科.
● 1995/08-2001/08,湖南科技学院,助教、讲师
● 2001/09-2007/07,湘潭大学物理与光电工程学院,硕士、博士
● 2001/09-2012/11,湘潭大学物理与光电工程学院,讲师、副教授、博士生导师
● 2012/12-2018/08,湘潭大学物理与光电工程学院,教授、博士生导师
● 2018/09-今,江苏大学理学院学院物理系,教授,博士生导师
● 2012/09-2013/12,美国伦斯勒理工学院,访问学者
● 2016/11-2017/11,美国加州大学伯克利分校、罗格斯大学,访问学者
● 2012/09-今,美国物理学会会员
● Phys. Rev. Lett., Adv. Mater., Nano Lett., Nature Commun. 等国际期刊审稿人
● 国家自然科学基金、浙江/湖南/广东省自然科学基金评审专家
● 计算凝聚态物理、纳米物理学、高等量子力学(研究生)
● 量子力学、统计物理、固体物理数理方程(本科生)
● 力学、热学、电磁学、光学、原子物理、大学物理学(本科生)
● 国家自然科学基金项目:二维薄膜堆垛形成的三维拓扑金属或半金属,(11874314)主持
● 国家自然科学基金项目:基于交连石墨烯的碳泡沫的电子结构及量子输运性质,(11474243)主持
● 国家自然科学基金项目: 石墨烯纳米结构中的热整流及整流效率研究,(51176161)主持
● 国家自然科学基金项目:折叠对石墨烯条带电子输运的影响和调控, (11074213)主持
● 国家自然科学基金项目:多终端石墨带的电子输运性质,(10847158)主持
● 国家自然科学基金项目:折叠石墨烯的电子结构,(11091240479)主持
● 国家自然科学基金项目:石墨纳米结构的电子性质,(30881240314)主持
● 教育部博士点新教师基金: 三终端石墨纳米结的电子输运性质,(200805301001)主持
● 湖南省优秀博士学位论文基金 (YB2009B022) 主持
● 湖南省高校创新平台开放基金项目: 硅纳米线的热电转化效率研究, (09K034)主持
● 湖南省自然科学基金省市联合项目:高热电优值硅纳米线的表面调控,(10JJ9001)主持
● 湖南省自然科学基金: 量子线与自旋链耦合体系的电子输运性质,(07JJ3003)主持·湖南省教育厅项目:准一维强关联体系密度矩阵重整化群方法研究,(05C103) 主持
专著、译著
● 《纳米物理学》,哈尔滨工程大学出版社,2008年,参编
● 《计算凝聚态物理》,湘潭大学出版社,2011年,参编
1
. Symmorphic intersecting nodal rings in semiconducting layers, Phys. Rev. Lett. 120, 106403 (2018)
2
. A Class of topological nodal rings and its realization in carbon networks, Phys. Rev. B (Rapid Communication) 97, 121108 (2018)
3
. Predicting two-dimensional carbon phosphide compounds: C2P4 by the global optimization method, Comp. Mater. Sci. 144, 70 (2018)
4
. Nexus networks in carbon honeycombs, Phys. Rev. Mater. 2, 42051 (2018)
5
. Ferromagnetism and Wigner crystallization in kagome graphene and related structures, Phys. Rev. B 98, 035135(2018)
6
. Double Kagome bands in a two-dimensional phosphorus carbide P2C3, J. Phys. Chem. Lett. 9, 2751 (2018)
7
. Spindle nodal chain in three-dimensional alpha’ boron, Phys. Chem. Chem. Phys. 20, 23500 (2018)
8
. Nodal-chain network, intersecting nodal rings and triple points coexisting in nonsymmorphic Ba3Si4, Phys. Chem. Chem. Phys. 20, 21177 (2018)
9
. Three-dimensional Pentagon Carbon with a genesis of emergent fermions, Nature Comm. 8, 15641 (2017)
10
. Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet, J. Phys. Chem. Lett. 8, 1707 (2017)
11
. Tunable Type-I and type-II Dirac fermions in graphene with nitrogen-molecule line defects, J. Phys. Chem. C 12122, 12476 (2017)
12
. Semi-Dirac Semimetal in Silicene Oxide, Phys. Chem. Chem. Phys. 19, 3820 (2017)
13
. A systematic investigation of thermal conductivities of transition metal dichalcogenides, International Journal of Heat and Mass Transfer 108,417 (2017)
14
. Electron and phonon properties and gas storage in carbon honeycomb, Nanoscale 8, 12863 (2016)
15
. Towards three-dimensional Weyl-surface semimetals in graphene networks, Nanoscale 8 (13), 7232 (2016)
16
. Coexistence of flat bands and Dirac bands in a carbon-Kagome-lattice family, Carbon 99, 65 (2016)
17
. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons, Scientific reports, 21639 (2016)
18
. Phonon transport in single-layer boron nanoribbons, Nanotechnology 27, 445703 (2016)
19
. Transition of thermal rectification in silicon nanocones, Applied Thermal Engineering 102, 1075 (2016)
20
. New record of high ZT found in hybrid transition-metal-dichalcogenides, J Appl. Phys. 120, 235109 (2016)
21
. Fluorine-Doped and partially oxidized tantalum carbides as nonprecious metal electrocatalysts for methanol oxidation reaction in acidic media, Adv. Mater. 28, 2163 (2016)
22
.Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots, J Phys. D: Appl. Phys. 49, 135303 (2016)
23
. Nanostructured Carbon Allotropes with Weyl-like Loops and Points, Nano Lett. 15 (10), 6974 (2015)
24
. Thermal transport in MoS2/Graphene hybrid nanosheets, Nanotechnology 26, 375402 (2015)
25
. Geometry, Stability and thermal transport of hydrogenated graphene nanoquilts, Solid State Comm. 213, 31 (2015)
26
. A low-surface energy carbon allotrope: the case for bcc-C6, Phys. Chem. Chem. Phys. 17, 14083 (2015)
27
. Versatile electronic properties and exotic edge states of single-layer tetragonal silicon carbides, Phys. Chem. Chem. Phys. 17, 11211 (2015)
28
. Monolayer II-VI semiconductors: a first-principles prediction, Phys. Rev. B 92, 115307 (2015)
29
. Enhancement of thermoelectric properties of gamma-graphyne nanoribbons with edge modulation, Eur. Phys. J. B 8, 60153 (2015)
30
. Carbon Kagome Lattice and Orbital-Frustration-Induced Metal-Insulator Transition for Optoelectronics, Phys. Rev. Lett. 113, 085501 (2014)
31
. Resonant transport and negative differential resistance in the graphene and graphyne quantum dots, Physica B 445, 88 (2014)
32
. Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6, 1113 (2014)
33
. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions, J. Appl. Phys. 114 (7), 073710 (2013)
34
. Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain, Chin. Phys. B 22 (8), 087303 (2013)
35
. Atomic structure and electronic properties of folded graphene nanoribbons: A first-principles study, J. Appl. Phys. 113 (17), 173506 (2013)
36
. Spin-polarized transport in zigzag graphene nanoribbons adsorbing nonmagnetic atomic chain, Euro. Phys. J. B 86 (2), 34 (2013)
37
. Thermal transport of graphene nanoribbons embedding linear defects, Acta Phys. Sinica 62(6): 068102 (2013)
38
. Studies on electrical properties of graphene nanoribbons with pore defects, Acta Phys. Sinica 62(5): 057101 (2013)
39
. R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons, J. Mater. Chem. A 1 (17), 5341-5346 (2013)
40
. The modification of central B/N atom chain on electron transport of graphene nanoribbons, J. Appl. Phys. 112 (11), 113713 (2012)
41
. Electron transport in folded graphene junctions, Phys. Rev. B 86 (19), 195426 (2012)
42
. Continuously Tunable Thermal Conductance in Arched Graphene Nanoribbons, Appl. Phys. Express 5 (12), 125103 (2012)
43
. Spin-polarized transport in graphene nanoribbon superlattices, Chin. Phys. B 21 (10), 107202 (2012)
44
. Electronic properties of disordered bilayer hexagonal boron nitride quantum films, Acta Phys. Sinica 61 (17) (2012)
45
. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev. B 86 (4), 045425 (2012)
46
. Thermal transport in graphyne nanoribbons, Phys. Rev. B 85 (23), 235436 (2012)
47
. Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons, Phys. Lett. A 376 (4), 559-562 (2012)
48
. Wurtzite-type CuInSe 2 for high-performance solar cell absorber: ab initio exploration of the new phase structure, J. Mater. Chem. 22 (40), 21662-21666 (2012)
49
. Thermal conductance modulator based on folded graphene nanoribbons, Appl. Phys. Lett. 99 (23), 233101 (2011)
50
. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons, Acta Phys. Sinica 60 (12) (2011)
51
. Spin transistor based on T-shaped graphene junctions, J. Appl. Phys. 110 (3), 033701 (2011)
52
. Energy gaps in nitrogen delta-doping graphene: a first-principles study, Appl. Phys. Lett. 99 (1), 012107 (2011)
53
. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons, J. Phys. D: Appl. Phys. 44 (21), 215403 (2011)
54
. Effect of triangle vacancy on thermal transport in boron nitride nanoribbons, Solid State Commun. 151 (6), 460 (2011)
55
. Thermal transport in L-shaped graphene nano-junctions, Acta Phys. Sinica 60(2): 028103 (2011)
56
. Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions, Phys. Rev. B 82 (24), 245403 (2010)
57
. Electron transport in graphene nanoribbons under a central potential modulation, Euro. Phys. J. B 78 (3), 381 (2010)
58
. Electronic properties of disordered bilayer graphene, Solid State Commun. 150 (47-48), 2366 (2010)
59
. Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons, EPL (Europhysics Letters) 91 (4), 46006 (2010)
60
. Strain effect on transport properties of hexagonal boron–nitride nanoribbons, Chin. Phys. B 19 (8), 086105 (2010)
61
. Electronic transport properties of metallic graphene nanoribbons with two vacancies, Solid State Commun. 150, 1308 (2010)
62
. Thermal transport in hexagonal boron nitride nanoribbons, Nanotechnology 21 (24), 245701 (2010)
63
. Resonant transmission in three-terminal triangle graphene nanojunctions with zigzag edges, Solid State Commun. 150 (13-14), 675-679 (2010)
64
. Electron transport of folded graphene nanoribbons, J. Appl. Phys. 106 (10), 103714 (2009)
65
. Electronic structure and bonding mechanism of La-Ir-Si: A first-principles study, Acta Phys. Sinica 58 (11), 7826-7832 (2009)
66
. Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge, EPL (Europhysics Letters) 88 (2), 28002 (2009)
67
. The effect of corner form on electron transport of L-shaped graphene nanoribbons, Physica B: Condensed Matter 404 (12-13), 1771-1775 (2009)
68
. Resonant transport and quantum bound states in Z-shaped graphene nanoribbons, Phys. Lett. A 372 (37), 5928-5931 (2008)
69
. Asymmetric transport in asymmetric T-shaped graphene nanoribbons, Appl. Phys. Lett. 93 (9), 092104 (2008)
70
. Electron transport of L-shaped graphene nanoribbons, J. Appl. Phys. 103 (6), 063711 (2008)
71
. Magnetotransport in a dual waveguide coupled by a finite barrier: Energy filter and directional coupler, Chin. Phys. 16 (10), 3087 (2007)
72
. Resonant transmission via magnetically bound states in periodic quantum structures, Phys. Rev. B 76 (11), 115439 (2007)
73
. Nonideal effects in quantum field-effect directional coupler, Chin. Phys. 15 (10), 2415 (2006)
74
. (n− 2)-fold resonant splitting in open periodic quantum structures, Phys. Rev. B 74 (3), 035310 (2006)
75
. The evolution of bound states in quantum wires under potential modulation, Physica B: Condensed Matter 373 (2), 253-257 (2006)
76
. Transmission resonance via quantum bound states in confined arrays of antidots, Euro. Phys. J. B 49,333 (2006)
77
. Transport through T-shaped quantum wires under potential modulation: Lattice Green’s function approach, Phys. Rev. B 71 (24), 245335 (2005) Electron transport across a quantum wire embedding a saw-tooth superlattice, Chin. Phys. 13 (9), 1537 (2004)
● 2017年被评为湘潭大学“韶峰学者”
● 2012年获湖南省自然科学奖一等奖
● 2009年获湖南省优秀博士学位论文
● 2010年被评为湖南省普通高校青年骨干教师
● 2007年获湖南省科学技术进步三等奖
● 2010年获湖南省自然科学优秀论文一等奖
版权所有:江苏大学物理与电子工程学院 Copyright © 2020 phy.ujs.edu.cn. All Rights Reserved
地址:江苏省镇江市学府路301号70信箱 邮编:212013 电话:0511-88788056