江苏大学主页 | English
首页 学院概况 党建工作 师资队伍 学科科研 学生培养 学生工作 制度建设 校友风采
 
 
师资队伍
博导风采
硕导风采
教授风采
教师风采
各类人才
招聘计划
博导风采 当前位置: 首页 > 博导风采 > 正文
陈元平
发布日期:2019-04-18   浏览次数:
姓  名 陈元平
职务职称 教授、博士生导师
研究方向 计算物理、凝聚态物理、人工智能、能源材料
研究生招生专业 物理学、材料物理
联系电话 0511-88780161
E-mail chenyp@ujs.edu.cn
通信地址 江苏省镇江市学府路301号江苏大学物理与电子工程学院(212013)
 
● 1991/09-1995/07,湖南师范大学物理系,大学/本科.
● 1995/08-2001/08,湖南科技学院,助教、讲师
● 2001/09-2007/07,湘潭大学物理与光电工程学院,硕士、博士
● 2001/09-2012/11,湘潭大学物理与光电工程学院,讲师、副教授、博士生导师
● 2012/12-2018/08,湘潭大学物理与光电工程学院,教授、博士生导师
● 2018/09-今,江苏大学理学院学院物理系,教授,博士生导师
● 2012/09-2013/12,美国伦斯勒理工学院,访问学者
● 2016/11-2017/11,美国加州大学伯克利分校、罗格斯大学,访问学者

● 2012/09-今,美国物理学会会员
● Phys. Rev. Lett., Adv. Mater., Nano Lett., Nature Commun. 等国际期刊审稿人
● 国家自然科学基金、浙江/湖南/广东省自然科学基金评审专家

● 计算凝聚态物理、纳米物理学、高等量子力学(研究生)
● 量子力学、统计物理、固体物理数理方程(本科生)
● 力学、热学、电磁学、光学、原子物理、大学物理学(本科生)

● 国家自然科学基金项目:二维薄膜堆垛形成的三维拓扑金属或半金属,(11874314)主持
● 国家自然科学基金项目:基于交连石墨烯的碳泡沫的电子结构及量子输运性质,(11474243)主持
● 国家自然科学基金项目: 石墨烯纳米结构中的热整流及整流效率研究,(51176161)主持
● 国家自然科学基金项目:折叠对石墨烯条带电子输运的影响和调控, (11074213)主持
● 国家自然科学基金项目:多终端石墨带的电子输运性质,(10847158)主持
● 国家自然科学基金项目:折叠石墨烯的电子结构,(11091240479)主持
● 国家自然科学基金项目:石墨纳米结构的电子性质,(30881240314)主持
● 教育部博士点新教师基金: 三终端石墨纳米结的电子输运性质,(200805301001)主持
● 湖南省优秀博士学位论文基金 (YB2009B022) 主持
● 湖南省高校创新平台开放基金项目: 硅纳米线的热电转化效率研究, (09K034)主持
● 湖南省自然科学基金省市联合项目:高热电优值硅纳米线的表面调控,(10JJ9001)主持
● 湖南省自然科学基金: 量子线与自旋链耦合体系的电子输运性质,(07JJ3003)主持·湖南省教育厅项目:准一维强关联体系密度矩阵重整化群方法研究,(05C103) 主持

专著、译著
● 《纳米物理学》,哈尔滨工程大学出版社,2008年,参编
● 《计算凝聚态物理》,湘潭大学出版社,2011年,参编

1. Symmorphic intersecting nodal rings in semiconducting layers, Phys. Rev. Lett.  120, 106403 (2018) 
2. A Class of topological nodal rings and its realization in carbon networks, Phys. Rev. B (Rapid Communication) 97, 121108 (2018)
3. Predicting two-dimensional carbon phosphide compounds: C2P4 by the global optimization method, Comp. Mater.  Sci.  144, 70 (2018)
4. Nexus networks in carbon honeycombs, Phys. Rev. Mater. 2, 42051 (2018)
5. Ferromagnetism and Wigner crystallization in kagome graphene and related structures, Phys. Rev. B 98, 035135(2018)
6. Double Kagome bands in a two-dimensional phosphorus carbide P2C3, J. Phys. Chem. Lett. 9, 2751 (2018)
7. Spindle nodal chain in three-dimensional alpha’ boron,  Phys. Chem. Chem. Phys. 20, 23500 (2018)
8. Nodal-chain network, intersecting nodal rings and triple points coexisting in nonsymmorphic Ba3Si4, Phys. Chem. Chem. Phys. 20, 21177 (2018)
9. Three-dimensional Pentagon Carbon with a genesis of emergent fermions, Nature Comm. 8, 15641 (2017)
10. Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet, J. Phys. Chem. Lett.  8, 1707 (2017) 
11. Tunable Type-I and type-II Dirac fermions in graphene with nitrogen-molecule line defects, J. Phys. Chem. C 12122, 12476 (2017)
12. Semi-Dirac Semimetal in Silicene Oxide, Phys. Chem. Chem. Phys. 19, 3820 (2017)
13. A systematic investigation of thermal conductivities of transition metal dichalcogenides, International Journal of Heat and Mass Transfer 108,417 (2017) 
14. Electron and phonon properties and gas storage in carbon honeycomb, Nanoscale 8, 12863 (2016)
15. Towards three-dimensional Weyl-surface semimetals in graphene networks, Nanoscale 8 (13), 7232 (2016) 
16. Coexistence of flat bands and Dirac bands in a carbon-Kagome-lattice family, Carbon 99, 65 (2016) 
17. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons, Scientific reports, 21639 (2016) 
18. Phonon transport in single-layer boron nanoribbons, Nanotechnology  27, 445703 (2016)
19. Transition of thermal rectification in silicon nanocones, Applied Thermal Engineering 102, 1075 (2016)
20. New record of high ZT found in hybrid transition-metal-dichalcogenides, J Appl.  Phys.  120, 235109 (2016)
21. Fluorine-Doped and partially oxidized tantalum carbides as nonprecious metal electrocatalysts for methanol oxidation reaction in acidic media,  Adv. Mater.  28, 2163 (2016)
22.Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots, J Phys. D: Appl. Phys.  49, 135303 (2016)
23. Nanostructured Carbon Allotropes with Weyl-like Loops and Points, Nano Lett. 15 (10), 6974 (2015) 
24. Thermal transport in MoS2/Graphene hybrid nanosheets, Nanotechnology 26, 375402 (2015)
25. Geometry, Stability and thermal transport of hydrogenated graphene nanoquilts, Solid State Comm.  213, 31 (2015)
26. A low-surface energy carbon allotrope: the case for bcc-C6,  Phys. Chem. Chem. Phys. 17, 14083 (2015)
27. Versatile electronic properties and exotic edge states of single-layer tetragonal silicon carbides, Phys. Chem. Chem. Phys. 17, 11211 (2015)
28. Monolayer II-VI semiconductors: a first-principles prediction, Phys. Rev. B 92, 115307 (2015)
29. Enhancement of thermoelectric properties of gamma-graphyne nanoribbons with edge modulation, Eur. Phys. J. B  8, 60153 (2015) 
30. Carbon Kagome Lattice and Orbital-Frustration-Induced Metal-Insulator Transition for Optoelectronics, Phys. Rev. Lett. 113, 085501 (2014) 
31. Resonant transport and negative differential resistance in the graphene and graphyne quantum dots, Physica B 445, 88 (2014)
32. Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6, 1113 (2014)
33. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions, J. Appl. Phys. 114 (7), 073710 (2013)
34. Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain, Chin. Phys. B 22 (8), 087303 (2013)
35. Atomic structure and electronic properties of folded graphene nanoribbons: A first-principles study, J. Appl. Phys. 113 (17), 173506 (2013)
36. Spin-polarized transport in zigzag graphene nanoribbons adsorbing nonmagnetic atomic chain, Euro. Phys. J. B 86 (2), 34  (2013)
37. Thermal transport of graphene nanoribbons embedding linear defects, Acta Phys. Sinica 62(6): 068102 (2013)
38. Studies on electrical properties of graphene nanoribbons with pore defects, Acta Phys. Sinica 62(5): 057101 (2013)
39. R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons, J. Mater. Chem. A 1 (17), 5341-5346 (2013)
40. The modification of central B/N atom chain on electron transport of graphene nanoribbons, J. Appl. Phys. 112 (11), 113713 (2012)
41. Electron transport in folded graphene junctions, Phys. Rev. B 86 (19), 195426 (2012)
42. Continuously Tunable Thermal Conductance in Arched Graphene Nanoribbons, Appl. Phys. Express 5 (12), 125103 (2012)
43. Spin-polarized transport in graphene nanoribbon superlattices, Chin. Phys. B 21 (10), 107202 (2012)
44. Electronic properties of disordered bilayer hexagonal boron nitride quantum films, Acta Phys. Sinica 61 (17) (2012)
45. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev. B 86 (4), 045425 (2012)
46. Thermal transport in graphyne nanoribbons, Phys. Rev. B 85 (23), 235436 (2012)
47. Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons, Phys. Lett. A 376 (4), 559-562  (2012)
48. Wurtzite-type CuInSe 2 for high-performance solar cell absorber: ab initio exploration of the new phase structure, J. Mater. Chem. 22 (40), 21662-21666 (2012)
49. Thermal conductance modulator based on folded graphene nanoribbons, Appl. Phys. Lett. 99 (23), 233101 (2011)
50. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons, Acta Phys. Sinica 60 (12) (2011)
51. Spin transistor based on T-shaped graphene junctions, J. Appl. Phys. 110 (3), 033701 (2011)
52. Energy gaps in nitrogen delta-doping graphene: a first-principles study, Appl. Phys. Lett. 99 (1), 012107 (2011)
53. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons, J. Phys. D: Appl. Phys. 44 (21), 215403 (2011)
54. Effect of triangle vacancy on thermal transport in boron nitride nanoribbons, Solid State Commun. 151 (6), 460 (2011)
55. Thermal transport in L-shaped graphene nano-junctions, Acta Phys. Sinica 60(2): 028103  (2011)
56. Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions, Phys. Rev. B 82 (24), 245403 (2010)
57. Electron transport in graphene nanoribbons under a central potential modulation, Euro. Phys. J. B 78 (3), 381 (2010)
58. Electronic properties of disordered bilayer graphene, Solid State Commun. 150 (47-48), 2366 (2010)
59. Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons, EPL (Europhysics Letters) 91 (4), 46006 (2010)
60. Strain effect on transport properties of hexagonal boron–nitride nanoribbons, Chin. Phys. B 19 (8), 086105  (2010)
61. Electronic transport properties of metallic graphene nanoribbons with two vacancies, Solid State Commun. 150, 1308 (2010)
62. Thermal transport in hexagonal boron nitride nanoribbons, Nanotechnology 21 (24), 245701 (2010)
63. Resonant transmission in three-terminal triangle graphene nanojunctions with zigzag edges, Solid State Commun. 150 (13-14), 675-679 (2010)
64. Electron transport of folded graphene nanoribbons, J. Appl. Phys. 106 (10), 103714 (2009)
65. Electronic structure and bonding mechanism of La-Ir-Si: A first-principles study, Acta Phys. Sinica 58 (11), 7826-7832 (2009)
66. Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge, EPL (Europhysics Letters) 88 (2), 28002 (2009)
67. The effect of corner form on electron transport of L-shaped graphene nanoribbons, Physica B: Condensed Matter 404 (12-13), 1771-1775 (2009)
68. Resonant transport and quantum bound states in Z-shaped graphene nanoribbons, Phys. Lett. A 372 (37), 5928-5931 (2008)
69. Asymmetric transport in asymmetric T-shaped graphene nanoribbons, Appl. Phys. Lett. 93 (9), 092104 (2008)
70. Electron transport of L-shaped graphene nanoribbons, J. Appl. Phys. 103 (6), 063711 (2008)
71. Magnetotransport in a dual waveguide coupled by a finite barrier: Energy filter and directional coupler, Chin. Phys. 16 (10), 3087 (2007)
72. Resonant transmission via magnetically bound states in periodic quantum structures, Phys. Rev. B 76 (11), 115439 (2007)
73. Nonideal effects in quantum field-effect directional coupler, Chin. Phys. 15 (10), 2415 (2006)
74. (n− 2)-fold resonant splitting in open periodic quantum structures, Phys. Rev. B 74 (3), 035310 (2006)
75. The evolution of bound states in quantum wires under potential modulation, Physica B: Condensed Matter 373 (2), 253-257 (2006)
76. Transmission resonance via quantum bound states in confined arrays of antidots, Euro. Phys. J. B 49,333 (2006)
77. Transport through T-shaped quantum wires under potential modulation: Lattice Green’s function approach, Phys. Rev. B 71 (24), 245335 (2005) Electron transport across a quantum wire embedding a saw-tooth superlattice, Chin. Phys. 13 (9), 1537 (2004)

● 2017年被评为湘潭大学“韶峰学者”
● 2012年获湖南省自然科学奖一等奖
● 2009年获湖南省优秀博士学位论文
● 2010年被评为湖南省普通高校青年骨干教师
● 2007年获湖南省科学技术进步三等奖
● 2010年获湖南省自然科学优秀论文一等奖
 
版权所有:江苏大学物理与电子工程学院 Copyright © 2020 phy.ujs.edu.cn. All Rights Reserved
地址:江苏省镇江市学府路301号70信箱 邮编:212013 电话:0511-88788056